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Abstract
A flexible structure was modelled and actively controlled by using a single space realizable

linear proof mass actuator. The NASA/UVAAJB actuator was attached to a flexible planar truss
structure at an "optimal" location and it was considered as both passive and active device. The

placement of the actuator was specified by examining the eigenvalues of the modified model that
included the actuator dynamics, and the frequency response functions of the modified system. The
electronic stiffness of the actuator was specified, such that the proof mass actuator system was
tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The
active control law was limited to velocity feedback by integrating of the signals of two
accelerometers attached to the structure. The two lower modes of the closed-loop structure were

placed further in the LHS of the complex plane. The theoretically predicted passive and active
control law was experimentally verified.

1. Introduction
Large continuous structures, like space structures tend to have tight restrictions on the

actual response of the structure. A passive or active control design is often necessary for the
structure to satisfy the desired response restrictions. The success of the passive and active control
design is based on the accuracy of the model that describes the dynamic characteristics of the
structure. Flexible distributed parameter systems can be successfully modelled by finite element

analysis 1. This category of structures is lightly damped and tends to have most of its mass
concentrated at the joints '_. Their natural frequencies are low and appear in closely spaced groups.
The finite element model of the structure that consists of a mass and a stiffness matrix, can be

reduced by traditional model reduction techniques by eliminating the insignificant displacements at

the nodal points 3. The dissipation energy of the system can be modelled by constructing a system

damping matrix, by assuming a normal mode system 4, a_d byesing the damping ratios obtained
experimentally from modal parameter estimation methods ' ' • In the case where the
discrepancy between the analytical model and the experimentally obtained modal model is

significant, the reduced order analytical damped model can be further modified 8, such that it is in

agreement with the experimental natural frequencies, damping ratios and mode shapes

8,9,10,11,12,13. It is important to realize that the design of the "optimal" control is based on the
modified reduced order model, but it is actually applied to the real structure. Therefore, the model

improvement mentioned above, becomes very important and its accuracy is vital in the success of
the design of the control law.

The structure used here, is a planar truss constructed with space realizable links and joints

in the configuration presented in fig.1. The truss is lightly damped and has the behavior of a large
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space structure, with most of its mass concentrated at the joints 2. It possesses low resonant

frequencies that appear in closely spaced groups and has both translational and rotational modes of
vibration.

The structure is passively and actively controlled by a single actuator. The actuator used in
this experiment is the NASA/UVA/UB proof mass actuator system. The actuator dynamics are
taken into consideration and a global model is constructed which includes both the structure and the

actuator dynamics 14,15. The location of the actuator is specified 16,17 by examining the

eigenvalues of the uncontrolled global model and the frequency response functions of the global
system. The actuator is considered as both a passive and an active device with two design
variables, its electronic stiffness and the generated force. The electronic stiffness is specified such
that the actuator proof-mass-electronic-spring system is tuned to one of the structural modes of the

truss by using traditional vibration absorber design 18,19,20. The generated force of the actuator

is specified by using output feedback techniques. Here, the active control law was limited to
velocity feedback by integrating the signals of two accelerometers attached to the structure. The
objective is to move the two lower modes of the closed-loop structure further in the LHS of the

complex plane and at the same time maintain stability of the closed-loop system 21,22. The

theoretically predicted passive and active control law are experimentally implemented and the
results are evaluated.

2. Modeling
2.1 Construction of the Finite Element Model

The finite element model of the structure was constructed by using the commercially
available MSC/PAL package for dynamic modeling. The structure weighed 7.335 Kg and was
constructed with links and joints, mainly made of aluminum alloy. The density of the material was
measured experimentally by using standard techniques. The Young's modulus of aluminum alloy
was used, since the links and joints are mainly constructed with this material. The nodal points of
the finite element model coincide with the location of the joints of the structure. Every nodal point
was allowed to have three degrees of freedom, that is translation in the z-axis and rotations about
the x and y-axis resulting in a 48-degree-of-freedom model (see Fig. 1). The boundary conditions
were assumed to be clamped for nodes 15 and 16 and free for the rest of the nodes, since the
structure was supported as illustrated in fig. 1. After the boundary conditions were applied the final
model was a 42-degree-of-freedom model.

2.2 Mass Distribution

The mass distribution of a non-uniform structure is a problem, that should by no means be
ignored. Here, two approaches were used. The first approach was to calculate an equivalent
internal diameter of the hollow links, such that the links had the measured mass. The links were

treated as uniform hollow tubes constructed with aluminum alloy with an equivalent length of
0.Jm. The joints were modelled as a concentrated mass at the particular location and are treated as
rigid. The natural frequencies of this model were calculated and are presented in table 1. The

results were considered unsatisfactory and one of the links was disassembled for more insight to
the mass distribution of the link. In the second approach, the real internal diameter of the links was
used and the excessive mass was distributed to the nodes accordingly. The resulting natural
frequencies of the model are compared to the experimental results in table 1. The finite element

model was constructed using a finer grid which include more nodal points, specifically an
additional nodal point at the mid-point of each link. The resulting model after the boundary
conditions were applied was a 126-degree-of-freedom model.

It can be concluded that the 45-node(126-do0 model is not significantly better than the 16-
node(42-do0 model in predicting the first fourteen natural frequencies. Therefore, it was found
unnecessary to use the 4S-node(126-do0 model in the determination of the control design of the
structure, since the 16-node(42-do0 model was as accurate.
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Table
the structure.

IUniform mass distribution

42dof

Fre luency in Hz

1 : Comparison of the theoretical and experimental natural frequencies of

PEM ] TEST I (rot accel)

I SDOF analysis

Corrected mass distribution

42dof 126dof 14dof

1 1.38 1.045 1.048 1.039 1.07
2 4.56 3.467 3.468 3.469 3.54
3 10.88 8.050 8.050 8.051 7.94
4 26.98 19.894 19.894 19.902
5 29.68 21.746 21.748 21.750
6 30.94 22.077 22.074 22.087 22.54
7 42.63 30.468 30.472 30.477 32.61
8 53.79 39.268 39.252 39.326 40.35

9 68.46 48.524 48.521 48.552

I0 72.61 51.746 51.704 51.842 52.51

II 82.93 58.645 58.629 58.718 61.41
12 I01.93 71.169 71.I16 71.275 65.62

13 I02.88 72.090 72.039 72.285 78.24

14 I16.52 80.741 80.610 80.920 91.74

15 236.64 219.856 183.903 187.13

2.3 Model Reduction
Most of the control algorithms are designed for first order systems. Transforming the 16-

node(42-dof) model in the state space results in a 84-dof state space matrix. This matrix is quite

large, and it was found that it is difficult to manipulate in vibration prediction, and control
algorithms. Therefore, it was necessary to reduce the order of the model before performing control
analysis and designing a control law. From the configuration of the model the rotational degrees of
freedom can be considered as less significant than the translational ones, and can be eliminated

from the model by using the Guyan reduction method 3. The resulting reduced order model is a

14-dof model. Eigenvalue analysis of this model showed that this model maintained the first
fourteen natural frequencies of the larger model quite accurately. The damping ratios determined
from the modal test were used in the construction of the system's damping matrix, by assuming

that the system exhibited normal mode behavior. The damping matrix is calculated by the
following equation:

D = MUFdiag(2_io3i)UF "1 (1)

where U F is the eigenvector matrix of M" I K, and _iare the experimentally obtained damping
ratios. The final reduced order model is described by the following equation:

Mi_(t) +D¢i(t) + Kq(t) -- 0 (2)
This equation describes only the dynamic characteristics of the structure. The actuator dynamics

were considered important and they were included in the dynamic model.

2.4 Actuator Dynamics
The actuator that was used in this experiment was the NASA/UVA/UB proof mass

actuator, presented in fig.2. The actuator system is comprised of a movable proof mass (mp rf =

0.225Kg), a fixed coil that applies an electromagnetic force on the proof mass, an analog interface
board, a power amplifier and a linear variable differential transformer (LVDT) sensor. The LVDT
transducer is an electromechanical transducer that measures the relative position of the proof mass

with respect to the actuator housing. The actuator can be modelled as single degree of freedom

mass-spring system, with a variable electronic stiffness and the ability to apply a force on the
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structure at the attachment point. An equal and opposite force is applied on the proof mass of the
actuator. The actuator is space-realizable in the sense that it does not have to be attached to the

ground. The equations of motion are written by taking into account the actuator dynamics 15.

Let's assume that the actuator is attached to the structure at the ith nodal point. The global system
that includes both the structure and the actuator dynamics, is of higher order, equal to the order of
the original system plus the order of the actuator dynamics, and it is described by:

°, ° , q:M1 0 + "oaCt q +0 mpr f qprf fg (3a)
0-ca 0 cac % -k ct 0 ka¢

where qprf is the displacement of the proof mass (mprf) , the scalars kac t and cact are the stiffness and

damping of the electronic spring of the actuator, mpar is the parasitic mass of the actuator, fg is
force generated by the actuator, and the matrices MI,DI and K l are the following matrices:

M l - M + mpardiag[0,...,0 , 1,0,...,0] (3b)
K t K + kactdiag[0,...,0,1,0,...,0] (3c)

D t = D + Cactdiag[O,...,O,l,O,...,O] (3d)

This is referred to as the open-loop system and the mass, damping and stiffness matrices are
denoted by subscript (OL) for convenience. Note that the non-zero elements correspond to the ith

row or/and column of the particular matrix or vector of the previous set of equations. The force fg
is the actuator-generated force applied on the structure. The electronic stiffness of the actuator can
be selected in a variety of ways for various design approaches.

3. Passive Control Design
3.1 Structural Modification Design

The parasitic mass of the actuator housing has the same effect as adding a dead parasitic
mass at the point of attachment. Increasing the mass of the structure is a structural modification,
with the direct effect of reducing the lower natural frequencies of the system. The natural
frequencies of the new model with the dead mass were examined both theoretically and
experimentally, and the results are tabulated in table 2. The experimental results are presented in
the form of point and transfer inertance (transfer function) plots. The transfer function of nodes 1

and 8, of both the original structure and the modified structure are presented in fig.3 and fig.4
respectively. The effect of attaching the PMA (inactive) was also examined. This configuration is
equivalent of having a dead mass equal to the parasitic mass of the actuator housing plus the proof
mass. However, when the actuator's electronic stiffness is activated, the proof mass becomes an
additional degree of freedom, and it is not part of the parasitic mass any longer.

The results indicate that the modified structure has lower natural frequencies than the
original structure. This is true for the first five structural modes as indicated in the table above.

The experimental frequency response plots show that the level of the vibration response was
reduced considerably, especially in the lower frequency region.

If the design methodology was limited to structural modification, it will be considered
necessary to examine the effect of adding the dead mass at different nodal points. The results are
presented in table 3. The design criterion that was used to place the actuator was to reduce the

overall vibration level at node 1, because a sensitive device will be attached at that point. The
actuator cannot be placed at node 1 because there is no room. Note that different design criterion
results in different locations of the actuator. Placing the actuator at node 10 doesn't reduce the
vibration at node 1 at all. Nodes 2, 3, and 4 have the same effect in reducing the vibration level of
node 1. But the first structural mode is shifted at 0.92 I-Iz. This was considered undesirable

because it is hard to control the low frequencies by active control. Placing the actuator at nodes 6,7
and 8 has the same effect in reducing the vibration level of node 1 and the first structural mode is

not shifted considerably. Therefore, any of nodes 6,7, and 8 can be used as an "optimal" location
of the actuator. The results that follow are for placing the actuator at node 8.
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Table 2 : Comparison of the theoretical and experimental natural frequencies of
the structure with and without the parasitic mass.

v_/l TEST I I
w/o w w/o w dead mass w PMA inactive

Frequency in I-lz

I 1.04 0.97 1.07 1.01 1.02

2 3.47 2.94 3.54 3.09 2.96

3 8.05 8.00 7.94 7.69 7.88
4 19.90 16.42 - 17.01 16.03

5 21.75 21.44 22.39

6 22.09 22.06 22.54 22.02 23.50
7 30.48 28.53 32.61 30.08 29.50

8 39.33 39.12 40.35 39.78 39.33

9 48.55 46.40
10 51.84 51.45 52.51 49.31 50.68

II 58.72 58.52 61.41 54.57 57.36

12 71.27 70.71 65.62 65.02 66.29

13 72.28 72.28 78.24 77.73 78.41

14 80,92 80.74 91.74 84.8

Table 3 : Comparison of the theoretical natural frequencies of the structure with

the parasitic mass at various nodal points.
FEM

w/o 8 2 3 4 5 6

Frequency inI-Iz

I 1.04 0.97 0.93 0.93 0.92 0.98 0.98 0.98 1.01
2 3.47 2.94 3.39 3.40 2.94 2.96 3.41 3.40 3.42

3 8.05 8.00 7,71 7.66 7.65 7.95 7.93 7.95 7.28

4 19.90 16.42 18.25 18.41 17.47 15.54 19.84 19.88 19.52

5 21.75 21.44 21.74 21.45 20.17 21.75 20.52 20.24 20.52

6 22.09 22.06 21.98 22.07 21.77 21.96 21.94 21.75 22.00

7 30.48 28.53 30.09 30.02 29.60 27.79 30.07 30.43 29.83

8 39.33 39.12 39.17 38.15 37.87 36.87 39.30 38.92 37.06

9 48.55 46.40 45.12 46.65 48.35 48.35 43.27 45.40 43.03
10 51.84 51.45 51.67 49.02 49.76 50.89 49.56 51.40 51.83
11 58.72 58.52 54.15 57.71 58.47 58.54 58.60 56.68 56.07
12 71.27 70.71 68.85 68.34 70.27 70.62 67.91 68.31 68.53
13 72.28 72.28 71.87 72.26 72.26 72.09 71.67 72.23 71.34
14 80.92 80.74 80.44 80.13 80.69 80.67 79.27 79.27 77.81

3.2 Vibration absorber design
There are several criteria for tuning the absorber to a MDOF structure. The simplest

criterion is to tune the natural frequency of the absorber to exactly one of the natural frequencies of

the structure 18, that is:

to, = _ (4a)

The design of the damped absorber results in an optimal tuned frequency given by 18:

00a = wt (4b)
l+p i

438



wherelai is the ratio of the mass of the absorber (here, the proof mass) over the mass of the SDOF

structure (here, the modal mass at mode to). The ratio _i or the modal mass can be calculated in a

trial and error procedure. The difficulty of applying the second method is the fact that it is difficult

to determine the optimal value for _ for the higher modes 22

An optimal tuning criterion for MDOF systems was presented in reference [19]. The

absorber frequency (toa) and damping coefficient (Ca) are given by:.

toa 2 = toi 2 l+J'lt

( I +_It4"_a)2 (5a)

Ca2 = ma2toi21Ua 1 +lut (5b)
( 1 +J.l t+ _t a)3

where,

mt 2 and /aa--m a 2

The scalarsm tand m aare the parasiticmass and the mass of the absorber,respectively,and the

scalar_ isthejth entry of the associatedeigenvectorof the ithmode, where j isthe degree of

freedom correspondingtothelocationof theabsorber.Note thattheeigenvectorsderivedform the
finiteelement model, arenormalizedwith respecttothemass matrix.

3.2.2 Experimental implementation of the passive control design
The stiffness of the PMA can be electronically varied, such that the actuator system can be

tuned to different frequencies. The PMA was attached to ground, and the LVDT signal was
examined for random signal input that generates an electromagnetic force on the proof mass. The
LVDT signal gives the relative position of the proof mass with respect to the housing of the
actuator. As it can be clearly seen in the experimental bode plot in fig.5, the PMA system is well
modelled by a SDOF system, with a natural frequency depending on the gain that determines the

electronic stiffness. The stiffness is a function of the external gain ((x), and other electromagnetic

constants of the coil and the amplifier (included in the factor K). The natural frequency of the
system is given by:

toa = 1/27r "_]otK/n_r f (6)

The damping in the actuator was identified as Coulomb damping due to the friction in the
bearings. An equivalent viscous coefficient was calculated from the frequency response functions

of the LVDT signal at particular tuning frequencies. It was found that the lower the tuning
frequency becomes, the higher the equivalent damping becomes. This is actually due to the fact
that at low frequencies the proof mass of the actuator cannot overcome the friction. As a

consequence, the natural frequency of the SDOF model of the actuator dynamics cannot go lower
than a certain frequency, since the stiffness is electronically determined and it depends on the
relative motion of the proof mass with respect to the housing of the actuator. It was found that the
actuator system behaves like an overdamped system when tuned to frequencies below 8 Hz.
Therefore, it was practically impossible to tune the actuator to frequencies lower than 8 Hz. Note
that, this range includes the three lower natural frequencies of the modified structure. Therefore,

the PMA is tuned to the fourth mode, by using the criteria described above. The results from only
the second criterion are presented here in the top part of fig.6, due to the fact that the plots from the
simple criterion (equation 4a) and the optimal tuning criterion (equation 5) were very similar. It can
be clearly seen that the vibration response is clearly reduced.

4. Active Control design

The active control law is implemented, by using one actuator and two sensors. The force
generator signal of the actuator was then given by:
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= FCy(t) (7)
where F'ihe feedback gain matrix and C the output matrix. The sensors were placed at node 1 and
node 4 as indicated in fig. 1. Node I was chosen because this is the possible point of attachment of
a sensitive device, where the vibration level is required to be reduced. Node 4 was chosen,
because it moves in the opposite direction of node 1, when the structure is excited at one of its
rotational modes. Here, accelerometers were used and their signals were integrated once by an
analog computer, to give the corresponding velocity signals. The output position matrix was
therefore zero, and the velocity output matrix was of the form:

0ix 3 1 lxll .J
(8)

The gain matrix is therefore given by:
F = [gl :g21 (9)

where gl and g2 are the two gains to be determined. Substituting into the previous equation results

in:

[ 1 O ]I x l 4 el(t) (I0)
fs =F 01x 3 1 01xll

The closed-loop system written in physical coordinate system, is given by the following equation:

Mog/fl(t ) +DoL_I(t ) + KOLq(t ) ffi BoLFCI¢I(0 (11)
The objective here is to calculate the gain matrix F such that the system has poles at the desired
locations. The right hand side of the previous equation is expanded as:

I!l [ i ]I Olx147ffi gl 0 g2 Olxll (12)
BoLFCI ffi [gl:g2] 0ix 3 1 01xll.l 6x15

gl 0 "g2 01xll

Note that this is a square sparse asymmetric matrix with only four non-zero elements. This results

in a closed-loop system damping matrix of the form:

(13)Eo, o751Dc Lffi - ct + g l 0 g2 01xll

6x15
0 -Cact0 Cacti gl 0 "g2 0 IxII

where Cact, corresponds to the equivalent viscous damping coefficient of the actuator system.
The objective here, was to decrease the amplitude of the vibration response at the low

modes that have high participation factors. Note that, direct pole placement design could not be

applied since with one actuator and two sensors, only one closed-loop pole can be placed. The
gains were determined in an ad hoc design, from an algorithm that covered a broad region of
values, with the main objective to move the lower two poles further in the LHS complex plane.
The results are presented in table 6. It can be clearly seen that the closed-loop system is stable
when the two gains gl and g2, are in the region -10 to 10 and 0 to 15 respectively. A finer grid
that covered the part of the stable region, where the damping of the first two modes was increased

(gl from 0 to 10 and g2 from 10 to 20) was also examined 22.
It was discovered that the "optimal "gain of F= [5 : 15] increases the damping on modes

1, 2, 4, 5, 6 and decreases the damping at mode 3. Note that, further increase of the gains towards
the "optimal" direction, resulted in an unstable closed-loop system. The experimentally obtained
transfer functions of nodes 1 and 8, are presented in fig.6, and they are compared directly with the

open-loop system, tuned to the fourth structural mode. The results show clearly, a decrease in the
response at modes 1 and 2. The decrease of the vibration response is not very large as desired,
because of the following reasons:
(i) By using only one actuator and two sensors, we can only affect 4 elements ofthe 15x15 closed-

loop damping matrix.
(ii) Further increase in the gains towards the "optimal "direction drives the third mode unstable.
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(iii) We are trying to control a flexible structure with many significant modes that cannot be
ignored.
(iv) We are only using velocity feedback

It was also illustrated experimentally that by increasing the gains at higher values drove the

proof mass system unstable.

Table 6 : Determination of the feedback gain matrix

g2 gl
-20 -15 -I0 -5 0 5 I0 15 20 25 30

1-20 U U U U U U U U U U U
-15 U U U U U U U U U U U
-10 U U U U U U U U U U U
-5 U U U U U U U U U U U
0 U U U S S U U U U U U
5 U U S S S S U U U U U
10 U U U S S S S U U U U
15 U U U U S S U U U U U
20 U U U U U U U U U U U

U = unstable, S = stable.

5. Closing Remarks
An experimental flexible planar truss structure was modelled and successfully controlled in

a passive and active way by using a space realizable linear proof mass actuator system. The PMA
was attached to the truss at a desired location, and tuned as traditional vibration absorber to one of
the structural modes of the truss by using several criteria. The actuator dynamics were
successfully modelled and taken into consideration in the design of the passive and active control
law. The active control design was adopted in the form of output velocity feedback by integrating
the signals of two accelerometers, attached to the structure. The limitations of this method were

indicated and difficulties of applying output feedback on large flexible structures with several
significant modes are identified and pointed out.
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Simulation Studles Uslng Multlbody Dynamics Code DART

James E. Keat

Photon Research Associates, Inc.

Abstract

DART is a multibody dynamics code developed by Photon Research

Associates for the Air Force Astronautics Laboratory (AFAL). The

code is intended primarily to simulate the dynamics of large space

structures, particularly during the deployment phase of their

missions. DART integrates nonlinear equations of motion

numerically. The number of bodies in the system being simulated is

arbitrary. The bodies' interconnection joints can have an arbitrary
number of degrees of freedom between 0 and 6. Motions across the

joints can be large. Provision for simulating on-board control

systems is provided. Conservation of energy and momentum, when
applicable, are used to evaluate DART's performance.

After a brief description of DART, the paper describes studies

made to test the program prior to its delivery to AFAL. Three
stuclies are described. The first is a large angle reorientating of a

flexible spacecraft consisting of a rigid central hub and four flexible
booms. Reorientation was accomplished by asingle-cyclesine wave

shape torque input. In the second study, an appendage, mounted on a

spacecraft, was slewed through a large angle. Four closed-loop

control systems provided control of this appendage and of the

spacecraft's attitude. The third study simulated the deployment of

the rim of a bicycle wheel configuration large space structure. This

system contained 18 bodies. An interesting and unexpected feature

of the dynamics was a pulsing phenomena experienced by the stays

whose playout was used to control the deployment.
The paper concludes with a short description of the current

status of DART.
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